

Jar Testing Methodology

21st, 22nd, 23rd March 2017 Location: Various .

Kevin Love

Irish Water

Introduction

- Introduction
- General Background
 - Why Regular Jar Testing is Essential
 - Know what you want to get out of your jar tests
 - Essential Equipment Required
- Jar Test Procedures
 - Basic Principals same for each method
 - Jar Test Template Examples
- IW Jar Test Specification
 - Section 3. Jar Test Methodology
 - Analysis
 - Interpretation of Results
- Raw Water Requiring Alkalinity Correction
 - Worked Examples
 - pH Correction proportional to coagulant dose
- Consistence in Stock Solutions
 - Preferably use a micro pipette
 - Making stock solutions where micropipettes are not available
- Floc Size Comparator
- Mg/I as product of mg/I AI/Fe
- Applying jar test findings onto a plant
- Trend Jar Test Results
 - Automatic Coagulation

General Background

- The fundamental aim of jar testing is using bench scale testing to simulate / duplicate conventional treatment steps of a full-scale plant
- It is important that the conditions used in the jar test accurately simulate full-scale plant conditions as possible. Knowledge of the water treatment plants hydraulic characteristics for initial mixing / flash mixing, flocculation, and clarification are all critical (as well as translation into a batchtesting protocol). The parameters include:
 - Effective retention times in the rapid mix and flocculation basins
 - Actual retention time in basins if jar testing is being done to evaluate time dependent reactions for which full-scale reaction time influences results

Why Regular Jar Testing is Essential

- Maximum Removal of Organics
 Reduced THM Formation
- Reduced Risk of Cryptosporidium
- Chemical Efficiency
- Optimum Clarification Process Performance
- Reduced Solids loading on to filters

 More efficient filter runs
- Reduced Chlorine Demand
- Maintain Chlorine Residuals Longer in Network Distribution

Know what you want to get out of the Jar test

- Chemical Response to Changes in Raw Water Quality or Characteristics
- Evaluation on the effects of changes in chemical dosages and points of application;
- Choose alternative coagulants;
- Addition polymeric coagulant aids (including evaluation at different timing point and locations);
- Variation of mixing intensities and times; and
- Evaluation on removal of total organic carbon, or other water quality parameters of concern (i.e. colour, turbidity, soluble/insoluble metals).

Equipment Required/Desirable

Item	Function
Flocculator/Jar Test Unit	6 No. jar testing unit recommended with variable speed stirrer settings (0-300rpm) and a stop watch.
6 x 500 or 1000ml Beakers (low style) (flocculator depending)	Glassware to carry out jar tests.
3 x 500/1000ml Beakers and additional glassware (1 litre and 500ml measuring cylinders) as required for filtration and sample collection	Raw water sample collection and for collecting filtered samples.
Micro-Pipette (10-100 μl and 1-20 μl) and dispensing tips <code>RECOMMENDED</code>	For dosing neat chemicals.
	Note: Chemical dilution should be avoided. Dilution can lead to degradation of active product and also dilution errors.
Pipettes (1ml, 5ml and 10ml) and suction pump	For dosing diluted chemicals
Whatman No.1 Filter Paper (30-50cm dia.)	Simulates similar filtration capability of rapid gravity filters. Porosity approximately 11 μ m. A
(Alternate porosity filter paper should be applied if filter media porosity known to be different)	suction filter could also be considered for jar test filtration as gravity filtration can be time consuming. Care should be taken not to damage or rip filter paper.
2 x larger filter funnels and funnel stand	For filtration of coagulated and flocculated samples
50, 10 and 1 ml syringes	For abstracting samples from beakers to fill bench instrument sample cells. Decanting is often difficult direct from beakers.
0.45 μm membrane discs	For filtering samples to measure true colour, dissolved metals, UVA or DOC only.
Turbidity meter (with sample bottles and cleaning oil)	Turbidity measurements. Periodic calibration to manufacturer standards recommended.

Equipment Required/Desirable (Contd.)

Photometer and Colorimeter pH meter (and standard solutions for calibration – buffers pH 4, 7 and 10)	For measuring colour, total metals (iron, aluminium or manganese – site specific). Suitable reagents as recommended my manufacturer instructions should be purchased in advance of any tests. Measuring pH change and preparing jars to a fixed pH for enhanced coagulation tests. Ensure pH propers are properly maintained, stored in the correct ionic strength notassium chloride buffer
	solution and calibrated frequently to a minimum of 2 points (pH 4 and pH 7). Probes should never be stored in deionised water or bulbs allowed to dry out.
Magnetic stirring plate and stirrer flea	Mixing and preparing samples (i.e. polyelectrolytes, lime slurry and soda ash).
Electronic balance scales	Weighing – recommended to use a calibrated device to 3 decimal places.
Sample bottles and labels from analytical labs	Samples that are considered to be optimised from jar tests and works sample points should be compared and evaluated for a given set of parameters.
Coagulant solution	Aluminium sulphate, polyaluminium chloride, ferric sulphate, ferric chloride - <u>All neat coagulant</u> <u>solutions should where possible be taken from site storage tanks and replaced on a weekly basis.</u> It is recommended that MSDS from chemical suppliers be obtained in advance of any tests from Irish Water or chemical supplier.
pH adjustment chemicals	Caustic soda (sodium hydroxide), soda ash (sodium carbonate – may require batching (5% w/w recommended), lime (for lime slurry 1.5% w/w recommended), sulphuric acid, hydrochloric acid.
(For all chemicals it is essential to note concentration (% w/w) and specific gravity.	Maintain good laboratory practice and keep acid and bases separate in a chemical safe box. All bottles should be clearly labelled and dated.
Polyelectrolyte	Poly solution where possible should be sampled daily or every other day from site day tanks. Alternatively, powder solutions should be carefully prepared to $0.1 - 0.2$ % w/v (or equivalent plant strength) every other day.

Jar Test Procedure

Irish Water Jar Test Specification

		Drinking Water D							
	Se	lection of Coa	gulant and Floce	culant Dose F	Rates				
Rev: 3 Approved by:	Eamon	Nunan			Page 1 of	fl			
Stage A: Deteri	minatio	n of raw water cha	racteristics.						
	Measu	ure pH, TDS, colour	(true and apparent), turb	idity, alkalinity, U	VA, UVT and tem	perature			
Stage B: Prepa	ration o	of Working Solution	15.						
Coagulant:	oagulant: Prepare a 1:10 w/v dilution of coagulants from commercial products using trea possible. Prepare daily. By weight: 10gms dissolved in 100 mls of water.								
Liquid	Alum	Ferric Sulphate	Ferric Sulphate HA	Chemifloc 101	Chemifloc 103	PAC			
7.	6	6.5	7.0	7.4	7.7	8.3			
			1 1 1 1 1 1 1 1 1 1	E00 1 0	PO				
	10% v	w/v Soda Ash Solutio	lution: 1 ml added to 3 on: 1 ml added to 3	500 mls of water = 500 mls of water =	80 mg/L. 200 mg/L.				
Stage C: Detern	114 50 10% v minatio	n of best dosage of	lution: 1 ml added to : on: 1 ml added to : coagulant.	500 mls of water = 500 mls of water =	80 mg/L. 200 mg/L.				
Stage C: Detern	10% v nination 1) P	n of best dosage of our 500 mls of raw v	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl	500 mls of water = 500 mls of water = ace on gang sturrer.	80 mg/L. 200 mg/L.				
Stage C: Detern	10% v nination 1) P(2) A	w/v Soda Ash Solution n of best dosage of our 500 mls of raw v gitate at 200 rpm.	lution: 1 ml added to 5 on: 1 ml added to 5 coagulant. water into beakers and pl	500 mls of water = 500 mls of water = ace on gang stirrer.	80 mg/L. 200 mg/L.				
Stage C: Deteri	11 30 10% v 1) P 2) A 3) A w	n of best dosage of our 500 mls of raw y gitate at 200 rpm. dd required coagula rorking solution for e	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required.	500 mls of water = 500 mls of water = ace on gang stirrer. Range 40 – 260 mg	80 mg/L. 200 mg/L. /L) by injecting 0.	l mls of			
Stage C: Detern	11 30 10% v 1) P 2) A 3) A w 4) A	n of best dosage of our 500 mls of raw u gitate at 200 rpm. Idd required coagula rorking solution for e .gitate at 200 rpm fo	lution: 1 ml added to 5 on: 1 ml added to 5 coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute.	500 mls of water = 500 mls of water = ace on gang stirrer. Range 40 – 260 mg	80 mg/L. 200 mg/L. L) by injecting 0.	l mls of			
Stage C: Deter	10% v nination 1) P 2) A 3) A 4) A 5) A	aum frydrostade So w/v Soda Ash Solution n of best dosage of our 500 mls of raw y gitate at 200 rpm. dd required coagula orking solution for e gitate at 200 rpm for gitate at 30 rpm for	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes.	500 mls of water = 500 mls of water = ace on gang sturer. Range 40 – 260 mg	80 mg/L. 200 mg/L. L) by injecting 0.	l mls of			
Stage C: Deterr	11 30 10% v 1) P 2) A 3) A 4) A 5) A 6) D sl	n of best dosage of our 500 mls of raw v .gitate at 200 rpm. .dd required coagula vorking solution for e .gitate at 200 rpm for .gitate at 30 rpm for letermine the optimu iow agitation phase.	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. m dose and coagulant by	500 mls of water = 500 mls of water = ace on gang sturrer. Range 40 – 260 mg y visual appreciatio	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs	l mls of dwing			
Stage C: Detern	114 50 10% v 1) P/ 2) A 3) A 4) A 5) A 6) D 51 7) M re	n of best dosage of our 500 mls of raw v gitate at 200 rpm. dd required coagula orking solution for e gitate at 30 rpm for gitate at 30 rpm for betermine the optimu low agitation phase. fonitor pH values af equired.	lution: 1 ml added to 5 on: 1 ml added to 5 coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. mn dose and coagulant by ter addition of coagulant	500 mls of water = 500 mls of water = ace on gang sturer. Range 40 - 260 mg v visual appreciatio and determine pH	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage	l mls of during as			
Stage C: Detern	11 30 10% v 1) P. 2) A 3) A 3) A 4) A 5) A 6) D sl 7) M re 8) R dv	n of best dosage of our 500 mls of raw v .gitate at 200 rpm. .dd required coagula orking solution for e- .gitate at 200 rpm for letermine the optimu low agitation phase. .fonitor pH values af equired. .lepeat evaluation unt etermined.	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. im dose and coagulant by ter addition of coagulant il the optimum coagulan	500 mls of water = 500 mls of water = ace on gang sturrer. Range 40 – 260 mg v visual appreciatio and determine pH t, dose rate and coa	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage gulation pH has be	l mls of during as een			
Stage C: Detern	11 30 10% v 1) P. 2) A 3) A 3) A 4) A 5) A 6) D 51 7) M 8) R 8) R 9) R	anum frydroxide So w/v Soda Ash Solution n of best dosage of our 500 mls of raw y gitate at 200 rpm. dd required coagula orking solution for e gitate at 200 rpm for gitate at 200 rpm for letermine the optimu low agitation phase. fonitor pH values af equired. epeat evaluation unt etermined. un test at the required	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. ml dose and coagulant by ter addition of coagulant il the optimum coagulant ed pH and coagulant dose	500 mls of water = 500 mls of water = ace on gang stirrer. Range 40 - 260 mg v visual appreciatio and determine pH t, dose rate and coa e rates.	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage gulation pH has be	l mls of during as een			
Stage C: Detern	10% v 10% v 1) Pi 2) A 3) A 4) A 5) A 4) A 5) A 6) D 51 7) M re 8) R 9) R 10) E	n of best dosage of our 500 mls of raw v gitate at 200 rpm. dd required coagula orking solution for e gitate at 30 rpm for gitate at 30 rpm for letermine the optimu low agitation phase. fonitor pH values af equired. lepeat evaluation unt etermined. un test at the require valuate and record the	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. mn dose and coagulant by ter addition of coagulant il the optimum coagulant ed pH and coagulant dose he level of floc formation	500 mls of water = 500 mls of water = ace on gang sturer. Range 40 - 260 mg y visual appreciatio and determine pH t, dose rate and coa e rates.	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage gulation pH has be	l mls of during as een			
Stage C: Detern	11 30 10% v mination 1) P. 2) A 3) A 4) A 5) A 6) D 4) A 5) A 6) D 10 8) R 40 9) R 10) P. 10% v 10% v	n of best dosage of our 500 mls of raw v gitate at 200 rpm. dd required coagula orking solution for e gitate at 30 rpm for gitate at 30 rpm for letermine the optimu low agitation phase. fonitor pH values af equired. epeat evaluation unt etermined. un test at the require valuate and record ti llow to settle for 30	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (F every 20 mg/L required. r 2 minute. 13 minutes. m dose and coagulant by ter addition of coagulant il the optimum coagulan ed pH and coagulant dose minutes and record settl	500 mls of water = 500 mls of water = ace on gang sturer. Range 40 – 260 mg v visual appreciatio and determine pH t, dose rate and coa e rates.	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage gulation pH has be	l mls of during as sen			
Stage C: Deter	11 30 10% v mination 1) P. 2) A 3) A 3) A 4) A 5) A 6) D 51 7) M 70 M 8) R 40 9) R 10) E 11) A 10% v 10% v 1	n of best dosage of our 500 mls of raw u gitate at 200 rpm. dd required coagula rorking solution for gitate at 200 rpm for gitate at 200 rpm for gitate at 200 rpm for letermine the optimu low agitation phase. fonitor pH values af equired lepeat evaluation unt etermined. un test at the require valuate and record til llow to settle for 30 iller supematant usin	lution: 1 ml added to : on: 1 ml added to : coagulant. water into beakers and pl nt dose to each beaker (R every 20 mg/L required. r 2 minute. 13 minutes. m dose and coagulant by ter addition of coagulant il the optimum coagulan ed pH and coagulant dose he level of floc formation minutes and record setth ag a No. 40 Whatman fil	500 mls of water = 500 mls of water = ace on gang sturrer. Range 40 - 260 mg v visual appreciatio and determine pH t, dose rate and coa e rates. 1 ement rates. ter paper and test fo	80 mg/L. 200 mg/L. L) by injecting 0. n of growing flocs adjustment dosage gulation pH has be	l mls of during as een			

Chemifloc Jar Test Procedure

Basic Principles Same for Each Procedure

- Pour 500ml/1000ml Raw Water into 6 Beakers
- Turn Flocculator on to 200 rpm
- Add the required amount of pH Correction Product
- Add the desired Amount of Coagulant (60-200ppm)
 - One jar should be used to reflect current plant set points for comparison/reference
- Allow to mix for 1-2 mins dependant on local site conditions
- Reduce Flocculator Speed to 30 rpm
- Allow to mix for 15 mins
- Record Flocculation pH
- Switch of Flocculator and Allow to stand for 30 minutes
- Draw of supernatant and test for turbidity as an indication of the clarification process
- Draw of supernatant from the beaker, filter through a 1.0 um syringe filter and test for UVA, UVT and Residual Coagulant
- Select dose that gives maximum organic carbon removal (Highest UVT) or Lowest Turbidity

Jar Testing Template Examples

Digest Manage		1				Deter						1	-					
Technician.						Date.												Coopulant data warne Colour (DtCo)
reconician:						time:												Coagulant dose versus Colour (PtCo)
				Raw	water Analy	ysis:												
				-														
Raw wa	iter sam	npie taken	from:				1		1									
Raw	/ water		3/1)								61							
RAW W	ATER D			Colour					LINGT		Chemic	al	-		1	WTD decod row		
Temp.	рН	Alkalinity	Apparent	(0.45µm	Turbidity	Iron	Manganese	TDS	(0.45µm	TOC (if known)	DOC (if known)	Conducti	vity	WTP coagulant dose (if known)	WTP poly dose (if known)	water pH (if		
°c		mg/l	PtCo	PtCo	NTU	ug/l	ug/l	mg/l	%	mg/l	mg/l	us/cm	1	mg/l	mg/I	pH		
													_					
															Coagulant dose	versus Colour (PtCo)		pH change versus Colour (PtCo)
Beaker No.					1	2	3	4	5	6	Target				A lumi	sium Sulabata 89/		Aluminium Sulphate 8%
Initial Jar pH															Alumi	num suprate 8%		Administration Sulphate 070
Coagulant						A	luminium Su	Iphate 8%					10	,			10	
Coagulant Do:	se as pr	roduct (mg	/1)		80	90	100	110	120	130			ç	•			9	
pH Adjustmer	nt Produ	uct					Sulphuric A	cid 96%					8	3			8	
pH Adjustmer	nt Dose	(mg/l)											ê i	7			2 ⁷	
pH measured					6.0	6.1	6.2	6.3	6.4	6.5			aze	5			88 6	
													÷ :	5			L = 5	
Polyelectroly	te	-	-	-			Flopam A	N 910					nojo 4	1			ng 4	
Poly Dose (mg	g/l)												Ŭ	3			ũ 3	
Poly Dose tim	ne after	coagulant	addition (m	iins)										2			2	
			Rapid I	Mixing and	Flocculation	n Mixing							1				1	
Rapid Mix Tim	ne (min:	s)											0	, L			0	
Slow Mix Time	e (mins	;)												1	2 3	4 5 6	1	2 3 4 5 6
Floc Size from	n Chart a	at end of S	low Mix Tim	ne											Ja	r Test Beaker No.		Jar Test Beaker No.
Settlement Ti	ime (mi	ns)																
				Settled Wa	ter Analysis	5										vorsus Turkiditu (NITH)		nH change versus Turbidity (NTU)
Colour (PtCo)	Settled	ł									<20			, i	oaguiant uose	versus furbiaity (NTO)		pricialize versus furbiaity (NTO)
Turbidity Sett	led Wa	ter (NTU)									<2					nium Sulphate 8%		Aluminium Sulphate 8%
Aluminium (T	otal) Se	ettled (ug/	1)										2	.0 0.			20	
Iron (Total) Se	ettled (u	ug/l)											1	.8			18	
Manganese (1	Total) Se	ettled (ug,	(1)										1	.6			1.6	
Alkalinity Set	tled (m	g/l CaCo3)											s 1	.4			C 14	
		F	iltered Wat	er Analysis	Whatman I	No. 1 Filter	ed)		-				Ĕ 1	.2				
Colour (PtCo)					5.0	4.5	4.0	2.0	3.0	4.0	<5		₹ 1	.0			210	
pH measured													<u>اة</u> و	.8			208	
Residual Alun	ninium	(ug/l)			50.0	40.0	20.0	25.0	30.0	35.0	<200		₽.	.6			- F 0.6	
Residual Iron	(ug/l)										<200		0	.4			0.4	
Manganese (u	ug/l)										<50		0	.2			0.2	
UVT (%)					88.0%	89.0%	90.0%	93.0%	88.0%	87.0%	>92		0	.0			0.0	
Turbidity NTU	J				0.29	0.27	0.20	0.10	0.15	0.24	<0.2			1	2 3	4 5 6	1	2 3 4 5 6
TOC (mg/l)															Ja	r Test Beaker No.	Ц	Jar Test Beaker No.
DOC (mg/l) (0).45µm fi	iltered)																
% TOC Remov	/al				#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!								
THMFP															Coagulant dose	versus Metal Residual		pH change versus Metal Residual
																		Alexandre Saula Instantia (1997)
Selection of C	Dotimum	Dose is Bas	ed on the Foll	owina Assum	ptions, 1) Hia	hest Filterea	Water UVT. Lo	west Filtere	d Water Iron	/Alum Resid	lual. Lowest				-Alum	nium Sulphate 8%		Aluminium sulphate 8%
					Filtered Wa	ter Turbidity							1	00			100	
													÷	90			= 90	
													2	80			2 80	
			F	omp Settin	gs								-	70	-		5 70	
									g/l				5	60			는 분 60	
Plant Flow (m	13/hr)		200	D	pH correcti	on Concer	tration		1835				e 0	50	-		e 50	
Optimum PH	Control	mg/l	50	D	Coagulant	Concentra	ion		1320				4	40			1 40	
Optimum coa	gulant ı	mg/l	110	0	Poly Day Ta	ank Solutio	n		1	I			ls (30			30	
Optimum Pol	y Dose i	mg/l	0.1	<u>L</u>									leta	20			20	
Calco	ulate Pu	ump Flow	Rate (Flow i	n m³/Dose i	n hr*mg/l)/	Concentra	tion g/l = l/h	r					2	10			≥ 10	
														o		ļ	o –	+ + + + + +
pH Control I/I	hr	5.4		pH Adjust	ment Pump	Stroke		Speed						1	2	3 4 5 6	1	2 3 4 5 6
Coagulant I/h	r	16.7		Coagulant	Pump Strol	ke 🛛		Speed							J	r Test Beaker No.		Jar Test Beaker No.
Poly I/hr		20.0		Poly Pump	Stroke			Speed					_					

Irish Water Jar Testing Specification Template

Achill RWSS

Jar Test Report

December 2016

Appendix 1

Jar Test Record Sheet

Date:	12/10/16 Weather: Dry/sunny					
Plant Name:	Achill Water Treatment Plant					
Raw Water Source:	Lough Acorrymore					

Raw Water Analysis

			Colo	our					
Temperature	pН	Alkalinity	Apparent	True	Turbidity	Conductivity	TDS	UVA	UVT
°c		mg/L CaCO ₃	PtCo	PtCo	NTU	μs/cm	mg/L		%
16.4	5.5	<5	54	46	0.72	112	112	0.243	57.1

		Jar Test 1			
Beaker No	1	2	3	4	
Alum Dose (mg/L)	60	70	80	90	
Soda Ash Dose (mg/L)	45	53	60	68	
Poly Dose (mg/L)	0.1	0.1	0.1	0.1	
Floc Size	Pin	Medium	Medium	Medium	
Floc pH	6.39	6.63	6.66	6.75	
S	Jar Test Target				
Alkalinity (mg/L CaCO3)	10	15	20	20	
Apparent Colour (PtCo)	4	2	0	0	<20
Turbidity (NTU)	0.44	0.35	0.32	0.32	<1
Filtere	ed Water Ana	llysis (0.45µm	ı)		
Aluminium (μg/L)	20	24	22	23	<50
True Colour (PtCo)		Under	Range		<5
Turbidity (NTU)	0.11	0.13	0.09	0.09	<0.2
UVA	0.013	0.014	0.013	0.014	
UVT (%)	96.8	96.7	96.9	96.8	>90

Achill WTP. Mayo County Council.

JAR TEST SHEET

COS Water Treatment Plant

Raw Water Source River Shannon

Date:

24/01/2017

	Jar No.	1	2	3	4	5	6
	Caustic Dose						
	(mg/L)	0	0	0	0	0	0
Rapid Mix 30 sec							
	Alum Dose (mg/L)	170	180	190	200	210	220
	Poly Dose (mg/L)	0.18	0.18	0.18	0.18	0.18	0.18
	Floc pH	6.86	6.72	6.67	6.63	6.63	6.61
Rapid Mix 2 min							
(Approx 250 revs)							
Slow Mix 15 min							
(Approx 25 revs)							
Settle 15 min	NTU	1.65	1.36	1.59	1.75	1.62	1.87
		Filter thro	ough 0.45m	nicron filter			
	Raw Water						
Alkalinity (mg/L)	98.4						
Colour (True-Filtered)	83						
Colour (Apparent)	97						
рН	7.95						
Turbidity (NTU)	2.3	0.15	0.11	0.16	0.12	0.12	0.14
UVT (<mark>%</mark>)	37.2	81.6	82.3	83.1	84.1	85.4	85.9
Aluminium							

Carrick on Shannon. Leitrim County Council

Flocculation Te	est										
Location:					Date:						
Raw Water Ouality:	 										
	Colour			тос			True Col				
	• pH			DOC			App Col.				
	• Temp						UV Trans				
				Alkalinity			UV Abs				
Beaker No.	Soda/Lime	Alum	Poly	Floc	рН	Res.	DOC	UV Trans	UV Abs	Remarks	TO C %Removal
1								IIIII	1105		
2											
3											
4											
5											
6											
								Current	Dose.		
Add Soda - 300 RPM for	1 min.							Soda -			
Add Alum- 100 RPM for 3	0 sec.							Alum -			
Ad Poly - 100 RPM for 30	sec, 35 RPM for 5 min	& 19 RPM for	10 min.					Poly -			
								рН			

Donegal County Council

Irish Water Jar Testing Specification

	law water	THMFP (µg	;/I)								
RAW	/ WATER D	ATA		Colour		Chemical					
Temp.	рН	Alkalinity	Apparent	True (0.45μm filtered)	Turbidity	Iron	Manganese	TDS	UVT (0.45µm filtered)	TOC (if known)	DOC (if known)
°C		mg/I	PtCo	PtCo	NTU	ug/l	ug/l	mg/l	%	mg/l	mg/l
Beaker No					1	2	3	4	5	6	Target
initial Jar p	tial Jar pH agulant							labets 00/			
Coagulant	agulant agulant Dose as product (mg/l)					A 00		110	120	120	
	aguiant Dose as product (mg/l) Adjustment Product					90	100	cid 06%	120	150	
pH Aujusti	nent Dose	(mg/l)				1	Juipitanes				
nH measu	H measured				6.0	61	6.2	63	64	65	
princusu	cu				0.0	0.1	0.2	0.5	0.4	0.5	_
Polvelectr							Flopam A	N 910			
Poly Dose	(mg/l)										
Poly Dose	time after	coagulant	addition (m	ins)							
		0	Rapid N	/lixing and	Flocculatio	n Mixing					
Rapid Mix	Time (min	is)									
Slow Mix T	ime (mins	5)									
Floc Size fr	rom Chart	at end of S	low Mix Tim	е							
Settlemen	t Time (mi	ins)									
				Settled Wa	ter Analysi	s					
Colour (Pt	Co) Settle	d									<20
Turbidity S	ettled Wa	iter (NTU)									<2
Aluminiun	n (Total) Se	ettled (ug/	I)								
Iron (Total) Settled (ug/l)									
Manganes	e (Total) S	ettled (ug/	1)								
Alkalinity	Settled (m	ig/I CaCo3)									
Calaur (Dt	(-)	F	litered wate	er Analysis	(wnatman	No. 1 Filter	ea)	2.0	2.0	4.0	
nH meacu	cu) red				5.0	4.5	4.0	2.0	5.0	4.0	<5
Prineasul Recidual A	luminium	(ug/l)			50.0	40.0	20.0	25.0	20.0	25.0	<200
Residual Ir	n (ug/l)	(ug/1)			50.0	40.0	20.0	23.0	30.0	33.0	<200
Manganes	e (ug/l)				1	1					<50
UVT (%)	- 1991 -1				88.0%	89.0%	90.0%	93.0%	88.0%	87.0%	>92
Turbidity N	urbidity NTU				0.29	0.27	0.20	0.10	0.15	0.24	<0.2
TOC (mg/l	DC (mg/l)										
DOC (mg/l) (0.45µm f	filtered)			İ	İ					
% TOC Ren	noval				#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	
TU 1 450								1			

Filtered Water Turbidity

Variations in Raw Water Quality

Optimum Flocculation pH

Floc Size, Settleability and Turbidity Removal

Best Organic Carbon Removal

• Highest UVT

Lowest Filtered Water Turbidity

Residual Alum/Iron < 50ug/l

Irish Water Jar Testing Spec.

Irish Water

ENGINEERING SPECIFICATION: CFC EVALUATION AND JAR TESTING (CLEAN WATER)

Document No: IW-TEC-XXX-XX Revision: 0.1 (2016)

TABLE OF CONTENTS

Appendix B jar Testing Record Sheet Template

Reco	ord of Changes and Ammendments	2
Fore	word	3
1.	Purpose and Review For Coagulation, Flocculation and Clarification (CFC)	6
2.	General Background	8
2.1	1. Jar testing - Defining study Goals	8
	Disinfection By-products	12
	THM Formation Potential (THMFP)	13
2.2	2. Jar Testing Preliminaries	14
	Laboratory practice and health and safety	14
	Recommended equipment	15
2.3	3. Coagulant properties and pH set points	18
	Alkalinity	18
	Chemical conversions	21
	pH measurements	22
	Expressing chemical concentrations	22
	Preparing chemical dilutions	23
	Point of chemical additions	23
	Polymer addition	24
	advice and guidance for raw water sampling requirements	24
3.	Jar Testing Methodology	26
	Jar test Prenaration	27
	Ontimal nH iar tecte	20
	Optimal por jui tests	30
	Optimal colgunant dose jar tests	00
3.1	Results and interpretation	34
	Point of Diminishing Returns (PODR)	34
	Jar Test Report	35
	Daw Water Quality Manifesing for eviating or new plants	20
4.	Raw water Quality Monitoring for existing or new plants	36
	Raw Water Monitoring Programme of Works	36
	Works inlet raw water and bench analysis as part of bench testing and sampling at a water trea	tment
	plant	37
	Suggested water quality parameters for laboratory analysis	38
Refe	rences 39	
	in the surger in the surger is	-
BI	bilography	39
Арре	endix A Floc Size Determination	40

.41

4

3. JAR TESTING METHODOLOGY

- Jar Test Preparation
 - Sample Collection
 - Raw Water Analysis
 - Preparation
- Optimal pH jar tests
 - Add Coagulant First
 - Addition of pH Correction Product to target pH 6.0,6.2,6.4.....
- Optimal Coagulant Jar Tests
 - Once optimum pH has been established
 - Vary Coagulant Dose
- Optimal Polymer Jar Tests
 - Polymer Selection
 - Different time intervals after addition of coagulant.

Analysis

FILTRATE BENCH ANALYSIS

- Carefully decant settled jar test water and pass through a 1µm filter paper and collect filtrate for analysis (to simulate RGF filtration stage). Measure for filtered colour, turbidity, UVT and <u>aluminium/iron/manganese residuals as applicable</u>.
- Further filter this primary filtrate through a 0.45µm filter and test for true colour, UVA, UVT and dissolved metals (if required).
- Tabulate and plot results to ascertain lowest metal and turbidity residuals. If there are several points which show equally low metal and turbidity residuals select the point with the lowest metal dose.

3.1 RESULTS AND INTERPRETATION

- Optimise and understand the conditions for coagulant dosing and pH adjustment requirements for best organics/natural organics removal. UVT is considered an excellent indicator of coagulation performance. Effective coagulation, flocculation and clarification is also essential to ensuring that a UVA of 0.035cm⁻¹ (92% UVT) is achieved in filtered water, thus removing the potential for disinfection by-product formation;
- Evaluate the potential for THM formation; and
- Understand the potential chlorine demand requirements of treated water to reflect on the likely THM formation and chlorine decay in extended supply networks.

Raw Water Requiring Alkalinity Correction

Alkalinity Consumption

1.0 mg/l of Product	mg/l Alkalinity as CaCO ₃ (F)
Liquid Aluminium Sulphate	0.24
Kibbled Aluminium Sulphate	0.51
Ferric Aluminium Sulphate	0.25
Ferric Sulphate Solution 12% w/w Fe	0.32
PolyAluminium Chloride	0.147

Alkalinity Addition

1.0 mg/l of Product	mg/l Alkalinity as CaCO ₃
Sodium Carbonate as Na ₂ CO ₃	0.94
Sodium Hydroxide as NaOH	1.25
Sodium Hydroxide as 25% w/w NaOH	0.312
Sodium Hydroxide as 30% w/w NaOH	0.375
Hydrated Lime as Ca(OH) ₂	1.35

Alkalinity Suppression

1.0 mg/l of Product	mg/l Alkalinity as CaCO ₃
Sulphuric Acid 96%	0.98
Sulphuric Acid 50%	0.49
Sulphuric Acid 30%	0.30

Worked Example of Alkalinity Correction

- Raw Water 15mg/I Alkalinity
 - Optimum Jar Test Alum Dose = 120mg/l
 - Target Residual Alkalinity 10-20mg/l
 - Alkalinity Correction Required for Optimum Coagulation is:
 - (120*0.24)+20-15 = 33.8mg/l
 - 1mg/l Sodium Carbonate = 0.94 mg/l Alkalinity; Required Soda Ash Dose is 33.8/0.94= 36 mg/l
- For Sites with Raw Water Alkalinity Requiring Suppression
 - Add suggested range of alum (100-200mg/l)
 - Add Sulphuric Acid until target pH is met
 - Convert mls of acid used to mg/l
 - E.g. 8.4mls of 5g/l stock solution added to 500ml
 - 84mg/l Sulphuric Acid Dosed to meet target pH

pH Correction Proportional to Coagulant Dose

• Variable Coagulant Dose and Fixed pH Correction

	1	2	3	4	5	6
Alum	60	80	100	120	140	160
Soda Ash	30	30	30	30	30	30
рН	6.65	6.50	6.35	6.20	6.15	5.90

• Variable Coagulant Dose and Fixed pH Correction

	1	2	3	4	5	6
Alum	80	80	80	80	80	80
Soda Ash	25	30	35	40	45	50
рН	5.84	6.02	6.2	6.38	6.56	6.74

pH/Alkalinity Elevation Proportional to Coagulant Dose

	1	2	3	4	5	6
Alum	60	80	100	120	140	160
Soda Ash	20	25	30	35	40	45
рН	6.18	6.21	6.19	6.20	6.14	6.07

• pH/Alkalinity Suppression Proportional to Coagulant Dose

	1	2	3	4	5	6
Alum	60	80	100	120	140	160
Sulphuric Acid	75	70	65	60	55	50
рН	6.1	6.09	6.12	6.06	6.12	6.08

Consistency in Stock Solutions

Examples of Stock solution used:

10g/l stock solution with 500ml beakers

- 1ml of this equals 20mg/l coagulant dose
- 1ml of product into 500ml equals 25mg/l
 - 12.5g/l solution
 - Requires calculation if you're looking for 80mg/l (3.2ml)
- For consistency stock solutions should be:
 - 5g/I Stock Solution Strength for 500ml Jars or 10g/I Stock Solutions for 1L Jars
 - Where 1ml of each stock solution equals 10 mg/l
 - Avoids factoring up/down dependent on stock solution Strength
 - This applies to all pH correction product and coagulants.
- Polyelectrolyte is the exception:
 - Required Stock Solution is 0.05g/l for 500ml Jars and 0.1g/l for 1L Jars
 - Where 1ml of each stock solution is 0.1mg/l

Preferably use a micro-pipette

Range of pipettes available

8% Liquid Alum 5% Soda Ash 0.1% Poly E.g. 100mg/l Alum Dose 60mg/l = 22.73µl $5 mg/l = 50 \mu l$ $0.1 \text{mg/l} = 50 \mu \text{l}$ $80 \text{mg/l} = 30.30 \mu \text{l}$ $10 mg/l = 100 \mu l$ 0.15mg/l = 75μl 100mg/l*500ml = 0.0227ml $100 \text{mg/l} = 37.88 \mu \text{l}$ 15mg/l = 150µl $0.2 mg/l = 100 \mu l$ 1320000mg/l 20mg/l = 200µl $120 \text{mg/l} = 45.45 \mu \text{l}$ All uls listed are for 500ml $140 \text{mg/l} = 53.03 \mu \text{l}$ $25 mg/l = 25 \mu l$ Or 22.73 μl samples. X2 for 1L Beakers

Making Stock Solutions

Target 1ml of stock solution is equal to 10mg/l of product for coagulation and pH correction

• Required strength to achieve this is **5g/I** or (5000mg/I) for 500ml jars (10g/I for 1 litre jars)

Calculation for **5g/l**: <u>1ml * 5000mg/l</u> = 10mg/l 500ml **10g/l** Solution <u>1ml * 100000mg/l</u> = 10mg/l 1000ml

• To make up a 5g/l solution of alum as **<u>coagulant</u>** put 3.78ml into a volumetric flask and make up to 1 litre

<u>5g/l * 1000ml</u> = 3.78ml	Ferric Sulphate 120 = 1550g/l i.e. 3.22m
1320g/l	PACL (10%) = 1205g/l i.e. 4.149ml
	Chemifloc 101 = 1356 g/l i.e. 3.678ml

• To make up a 5g/l solution of soda ash for **pH correction** put 100ml from day tank into a volumetric flask and make to 1 litre (assuming a 5% solution)

<u>5g/l * 1000ml</u> = 100ml 50g/l

- Sulphuric Acid and Caustic Soda is made up similar to alum at 5 g/l and using the following g/l strengths:
 - 96% Sulphuric Acid 1835g/l
 - 50% Sulphuric Acid 1395g/l
 - 30% Caustic Soda 1330g/l
 - 25% Caustic Soda 1275g/l
- To make up a 0.05g/l solution of **polyelectrolyte** put 50 ml from day tank into a volumetric flask and make to 1 litre (assuming a 0.1% solution)

 $\frac{0.05g/l*1000ml}{1g/l} = 50ml \qquad \frac{1ml*50mg/l}{500ml} = 0.1mg/l$

Floc Size Comparator

Figure 16: Comparator for the Evaluation of Floc Size Index in Coagulation Tests

Risk: Good floc formation but poor organic carbon removal Filter Supernatant and analyse for optimum dose over visual Assessment

mg/l as Product or mg/l as Al or Fe

• How to convert from mg/I AI to mg/I product.

Product	Chemical formula	% alumina content as Al2O3	% Al content	% Fe content	spec grav
Liquid Aluminium Sulphate 8%	Al2(SO4)3nH2O	8.25	4.25	0.00	1.32
Chemifloc 103	Al2(SO4)3nH2O.nH2SO4	6.00	3.00	0.00	1.29
Polyaluminium Chloride 10%	Aln(OH)mCl3n-m	10.00	5.00	0.00	1.21
Chemifloc 101	xAl2(SO4)3.(1-x)Fe2(SO4)3.nH2O	-	4.00	3.20	1.35
Ferric sulfate 12%	Fe2(SO4)3.nH2O	0.00	0.00	12.00	1.50
Ferric chloride	FeCL3.nH2O	0.00	0.00	13.10	1.40

E.g. Liquid Aluminium Sulphate 8% Percentage Alum Content is 4.25% 100/4.25 * mg/l Al = mg/l Product 23.5 * 4.55mg/l = 100mg/l

Conversion factors (mg/l)	
Al ₂ O ₃ to Al ³⁺	÷ 0.5294
Aluminium Sulphate liquid to Al ³⁺	÷ 23.6111
Fe ₂ (SO ₄) ₃ to Fe ³⁺	÷ 8.3333
FeCl ₃ to Fe ³⁺	÷ 6.8965
Fe ³⁺ to Al ³⁺	÷ 2.0666

Application of jar tests results onto the plant

Optimum Alum dose identified 100 mg/l

Plant Flow Rate 350 m3/hr

Specific Gravity of Alum = 1.32 or 1320g/l

Pump Dosing Rate = <u>350m3/hr * 100mg/l</u> = 26.5l/hr 1320g/l

26.5l/hr = 441 mls/min.

Perform Pump Draw Down

Monitor:

- Flocculation pH on site
- Clarification Process Outlet Turbidity
- Filtered Water Turbidity
- Final Water UVT

Multiple Jar Test Results -v- Time

- Use historical jar tests as a prediction of future doses based on raw water organics
- Plot Raw Water UVT/UVA -v- Alum Dose
- Plot Optimum Alum Dose -v- Flocculation pH
- Plot Optimum alum dose -v- Filtered Water UVT/Turbidity

Outcome: Eventual Feed Forward Coagulant Dosing Curve based on raw water UVT/UVA or TOC

Examples of Automatic Coagulant Dosing Curves

Carrick on Shannon Automatic Alum Dosing Curve

Swinford Automatic PACL Dosing Curve

SAC	Corrected Dose	Corrected Dose
m-1	mg/I Al	mg/l Product
5	2	47.2
15	5	117.9
30	8.0	188.7
35	8.5	200.5
38.4	9.0	212.3
42	9.2	217.0
47.1	9.4	221.7
53.6	9.8	231.1
57.3	10.2	240.6
57.9	10.3	242.9
61.7	10.5	247.6
76.5	11.0	259.4
100	12.5	294.8
121.6	13.5	318.4
150	18	424.5

Jar Test Tables and Graphs for Interpretation

