Session 2 - Nature-based Solutions (NbS) Practical Implementation

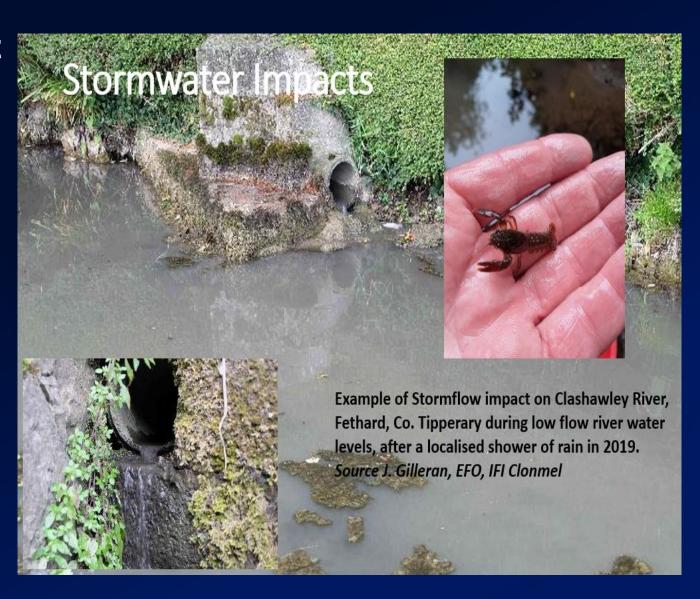
Tom Brennan, CEng MIEI
Eamonn O'Connell, CEng MIEI
Local Authority Waters
Programme (LAWPRO)

Session 2 - Nature-based Solutions (NbS) Practical Implementation

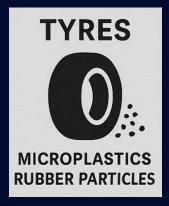
Contents

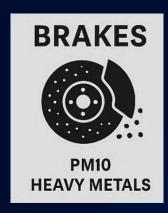
- Context for Nature-based Solutions
- Mainstreaming Nature-based Solutions Guidance Documents
- Mainstreaming Nature-based Solutions Demonstrators
- Top Tips & Leasons Learned
- Practical Implementation Overview of Challenges & Barriers
- Taking In Charge & Maintenance of Nature-based Solutions
- Finance Barriers & Land Acquisition
- Infrastructure Climate & Nature Fund

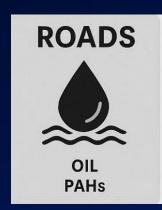
LAWPRO Role


Local Authority Waters Programme (LAWPRO) works on behalf of Ireland's 31 local authorities to protect and restore good water quality in our rivers, lakes, estuaries, ground and coastal water through catchment science and local community engagement.

- Working with different sections of LAs
 e.g., planning, engineering, environment,
 biodiversity to develop best Nature based Solutions (NbS) practice for Ireland
- Working with DHLGH and other government departments bring LA feedback forward and develop policy
- Develop training with professional bodies and practitioners
- Work with CAROs, biodiversity officers and public representatives
- Strong community (Community Water Officer) and science focus
- Funding for NbS demonstrator exemplar projects & NbS delivery by Communities via the CWDF




Urban Stormwater Management


- 1. Historically get water off site as quickly as possible
- 2. Combined sewers designed for small populations & more permeable surfaces
- 3. Now many combined sewers have inadequate capacity
- 4. Sewage treatment plants dealing with lightly contaminated water unnecessary
- 5. Storm overflows = great pollution risk
- 6. Climate change will exacerbate the above

Stormwater – First Flush

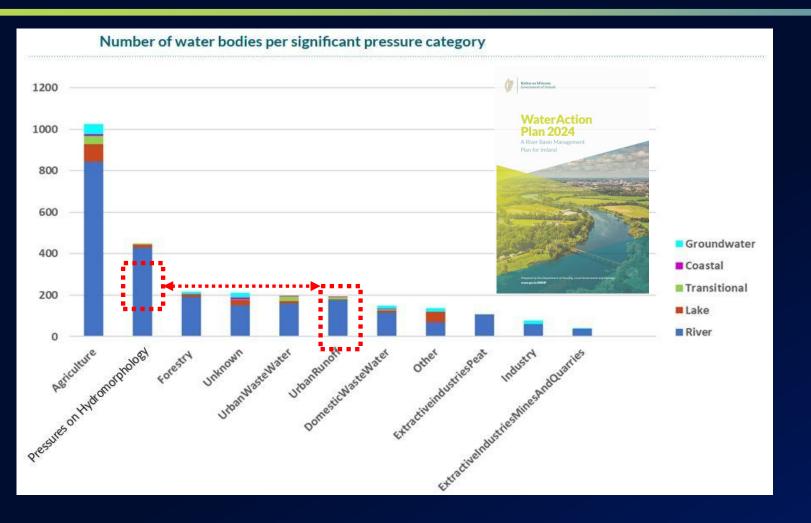

Müller et al 2020. The pollution conveyed by urban runoff: A review of sources. Science of the total environment. Vol 709.

Table 2. Sources of pollutants released by vehicular traffic in urban areas.				
Specific source	Pollutants released	References		
Vehicle operation				
Exhaust gases and particles	Hydrocarbons, PAHs, NOx, Ni, BTEX	Markiewicz et al. (2017); Brinkmann (1985); Huber et al. (2016); Kayhanian (2012); Duong and Lee (2011); Liu et al. (2018b)		
Catalytic converters	Rh, Pd, Pt	Rauch et al. (2005)		
Vehicle wear				
Tires	TSS, Cd, Cu, Zn, PAHs, microplastics	Muschack (1990); Councell et al. (2004); McKenzie et al. (2009); Legret and Pagotto (1999); Kose et al. (2008); Horton et al. (2017a)		
Tire studs	w	Huber et al. (2016)		
Brakes	TSS, Cd, Cu, Ni, Pb, Sb, Zn, PAHs	McKenzie et al. (2009); Hjortenkrans et al. (2007); Markiewicz et al. (2017)		
Engine and vehicle body wear	Cr, Ni	Gupta et al. (1981); Ward (1990)		
Body paint	Pb	Kayhanian (2012)		
Wheel balance weights	Pb, Fe (steel), Zn	Root (2000); Bleiwas (2006)		
Vehicle washing				
Commercial car	Pb, Cd, Cr, Zn	Sörme et al. (2001)		
washing facilities	Phthalates, NPs, NPFOs	Björklund (2010)		
	HEOS			
Road abrasion				
Abrasion by tires (non- studded and studded)	TSS	Hvitved-Jacobson and Yousef (1991); Van Duin et al. (2008) Lindgren (1996)		
	PAHs	Markiewicz et al. (2017)		
	Microplastics	Magnusson et al. (2016); Horton et al. (2017b); Vijayan et al. (2019a)		

Stormwater – First Flush

Nature-based solutions and Urban Sensitive Design also offer opportunities for

- River Restoration
- Deculverting / Daylighting*
- Reconnecting hydrological pathways (via RMP process)
- Large scale integration into public spaces

Whilst the focus will be on Urban Runoff, NbS projects can also address Pressures on Hydromorphology in the urban environment (both greenfield and brownfield sites)

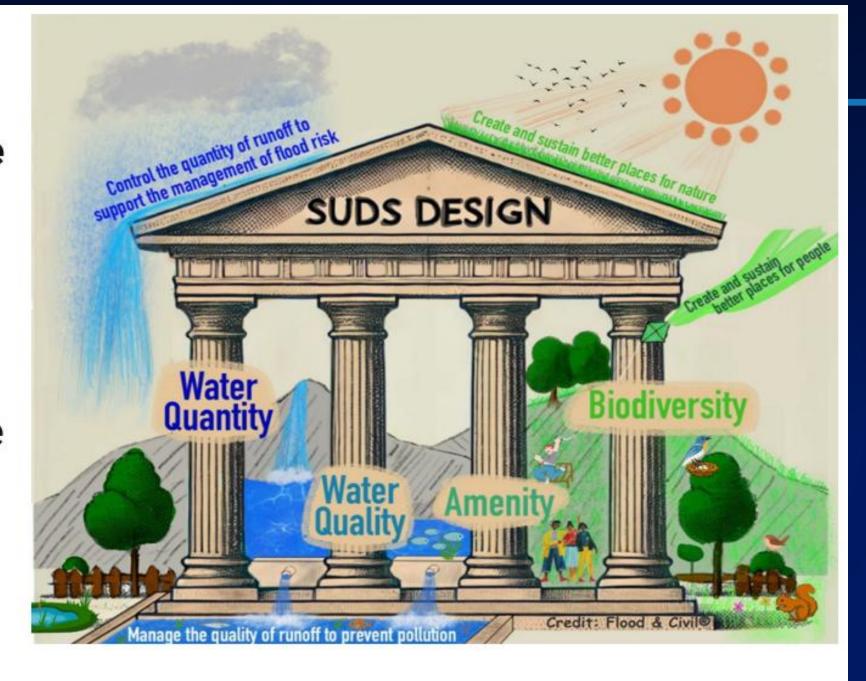
^{*&#}x27;River Daylighting' - the process of removing a river or stream from its buried or piped state and restoring it to an open, above-ground channel, often in urban areas

Context for Nature-based Solutions (NbS) - Climate Action /

Mitigation
Currently we are overly reliant on conventional piped systems. During downpours the capacity of these drainage systems can be overwhelmed causing pluvial flooding

 Rainwater Management using NbS measures or interventions can help to manage the effects of increased or high-density rainfall due to Climate Change within (1) existing settlement, (2) proposed future expansions of settlements or (3) development / regeneration zones

NbS Climate Adaption & Mitigation Measures and Interventions can contribute to climate resilience of an urban catchment regardless of size


Climate Change Key Risks to Local Authority Service Delivery:

- ☐ River Flooding
- ☐ Extreme Precipitation

Nature-based Solutions leverage nature and the power of healthy ecosystems to protect people, optimise infrastructure and safeguard a stable and biodiverse future.

Context for Nature-based Solutions (NbS) – National Planning

Project Ireland 2040

National Planning Framework First Revision

National Policy Objective 80

Support the retrofitting of existing environments to cater for surface water run-off through the use of nature based solutions.

National Policy Objective 79

Support the management of stormwater, rainwater and surface water flood and pollution risk through the use of nature-based solutions and sustainable drainage systems, including the retrofitting of existing environments to support nature based solutions.

National Policy Objective 77

Enhance water quality and resource management by:

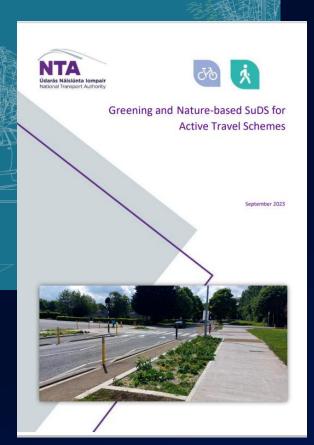
- Ensuring that River Basin Management Plan objectives are fully considered throughout the physical planning process.
- Integrating sustainable water management solutions, such as Sustainable Urban Drainage (SUDS), nonporous surfacing and green roofs, and nature based solutions, to create safe places.

National Policy Objective 82

Integrated planning for Green and Blue Infrastructure will be incorporated into the preparation of statutory land use plans while maintaining ecosystem services and ecosystem functions and conserving and/or restoring biodiversity.

Under the NPF the Government will support:

Green and Blue adaptation including nature based solutions which seeks to use ecological
properties to enhance the resilience of human and natural systems in the face of climate
change, such as creation of green and blue spaces and parks and waterways to enable better
management of urban micro-climates.


Context for Nature-based Solutions (NbS) – Sustainable Development

Mainstreaming Nature-based Solutions (NbS) - Guidance Documents

DMURS Advice Note 5

Design Manual for Urban Roads and Streets

- Developed with Department of Transport, NTA, LAWPRO and DHLGH water and planning units
- Build in Nature-based Solutions into streetscapes
- Use Nature-based Solutions to improve place making – aesthetics, traffic management
- Clear before and after visualisations
- NB: DMURS top tips in what to and what not to do (See Eamonn's slide below)

Mainstreaming Nature-based Solutions (NbS) - Guidance Documents

Implementation of Urban Nature-based Solutions

Guidance Document for Planners, Developers and Developer Agents

January 2025 Version 2.0

Reference Foreword

1.		Introduction		
	1.1	Purpose & context of the Nature-based Solutions (NbS) guidance document	2	
	1.2	Climate Change, the Water Framework Directive (WFD) & the United Nations		
		Sustainable Development Goals (UN SDGs)	3	
	1.3	Policy & Legislative Context	4	
	1.4	What are Nature-based Solutions (NbS)?	5	
2.		Design of Nature-based Solutions	7	
	2.1	Integrating NbS into development proposals	8	
	2.2	NbS Design Parameters	9	
3.		Nature-based Solutions Toolbox	13	
3.	3.1	Nature-based Solutions Toolbox Filter Drains	13	
3.	3.1 3.2			
3.		Filter Drains	14	
3.	3.2	Filter Drains Swales	14 15	
3.	3.2 3.3	Filter Drains Swales Bioretention Systems	14 15 16	
3.	3.2 3.3 3.4	Filter Drains Swales Bioretention Systems Tree Pits	14 15 16 17	
3.	3.2 3.3 3.4 3.5	Filter Drains Swales Bioretention Systems Tree Pits Detention Basins	14 15 16 17 18	
3.	3.2 3.3 3.4 3.5 3.6	Filter Drains Swales Bioretention Systems Tree Pits Detention Basins Ponds & Wetlands	14 15 16 17 18	

Chapter 4 contains worked examples and case studies of Traditional and NbS Urban Drainage Designs across different development typologies at a variety of scales. These should be read in conjunction with the Nature-based Solutions Toolbox (Chapter 3, p13-22)

4.		NbS Case Study Examples	23	
	4.1	Small Edge of Town Development	24	
	4.2	Large Urban Mixed Residential Development	26	
	4.3	Urban Educational Development	28	
	4.4	Urban Infill Commercial Development	30	
	4.5	Urban Public Realm Development	32	
	4.6	Small Urban Residential Infill Development	34	
	4.7	Urban Link Road Development	36	
5.		Management of NbS	39	
	5.1	Maintenance and Management of NbS	40	
	5.2	Conditioning of Planning Applications	41	
6.		Health & Safety Risk Assessment	43	
	6.1	Health & Safety Risk Assessments	44	
Appendices				
	Α.	Guidance Document References	48	
	B.	Water Quality	49	
	C.	Groundwater Protection Matrix Responses	50	
	D.	Nature-based Solutions Methodology	51	
	E.	Nature-based Solutions Maintenance Schedules	58	
	F.	Nature-based Solutions Checklist	64	

There are three major swale variations - the Conveyance & Attenuation Swale, the Dry Swale and the Wet Swale. A Conveyance & Attenuation Swale is a shallow vegetated channel. A Dry Swale is a Conveyance Swale that has the addition of a filter medium and underdrain system. A Wet Swale is a Conveyance Swale, designed to deliver wet and/or marshy conditions at the base.

Key benefits:

- » Well suited to managing pavement runoff as a result of their linear design
- » Provides interception storage volumes
- » Used to integrate attractive vegetated corridors into streetscapes
- » Can be adapted to natural overland flow paths to provide direction for runoff
- » Pollution and blockages are visible at the surface and are easily dealt with
- Minimal difference between maintenance requirements for a swale and a general landscape feature and, as such, maintenance can be incorporated into existing general landscape maintenance regimes. Where a Dry Swale is used it requires no additional maintenance over the case where a separate landscape and drainage maintenance strategy is in place. Maintenance requirements for a Wet Swale are lesser than those for a Dry Swale.
- » Reduce the urban heat island effect by providing cooling via the return of moisture to the air through evapotranspiration from vegetation.

Key considerations:

» The shape of the swale has an impact on its function, typical design practice is to provide a trapezoidal or

- parabolic cross-section as these offer good hydraulic performance and are the easiest form to construct and maintain
- » The longitudinal slope of any swale should be constrained to between 0.5-3%, where slopes are greater than 3% check dams should be incorporated to ensure efficient use of storage space and to slow runoff velocities. Where runoff velocities are greater than recommended standards, permanent reinforcement matting ground protection should be considered
- Swale depths need to be considered against side slopes to ensure the NbS feature doesn't pose a hazard. The normal maximum swale depth is 400-600mm
- » The bottom width of a swale should generally be between 0.5-2m. Where widths are greater than 2m, the use of flow dividers (separates out flow) and flow spreaders (uniformly disperse flow) should be considered to prevent flow channelling (constraining flow to a concentrated area)

Risks/Constraints:

- » Difficult to incorporate into dense urban landscapes where space is limited
- Requires check dams when on a steep site. Generally, not suitable where longitudinal slopes are greater than 10% even with the addition of check dam

Figure 8: Dry Swale - Min Ryan Park, Wexford

Design Sources:

CIRIA SuDS Manual 2015 - Chapter 17

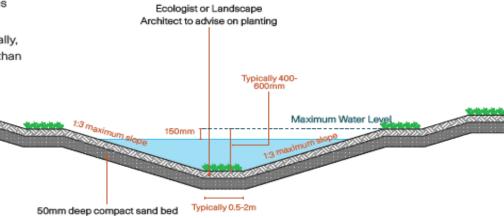
Manual for Urban Roads and Streets

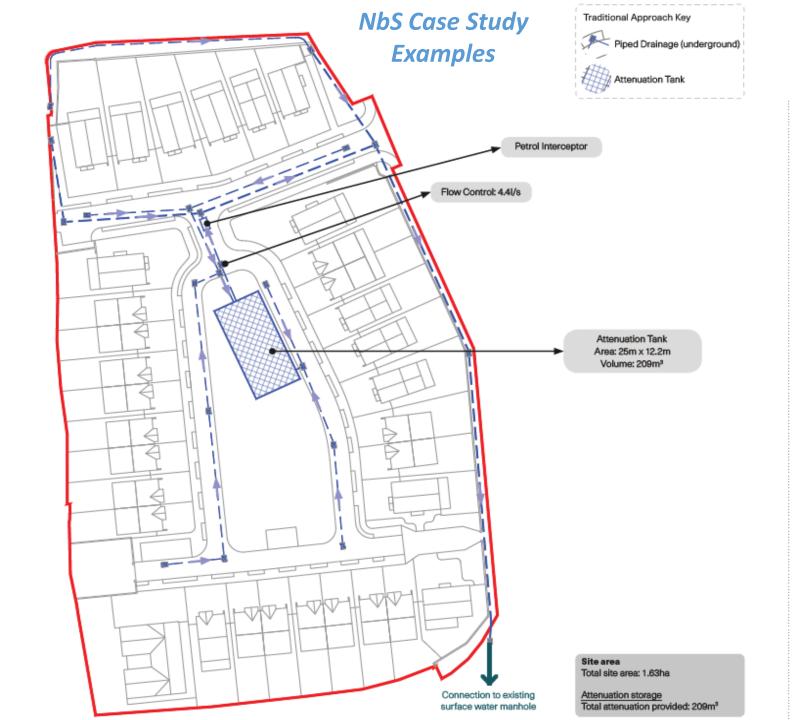
CIRIA Guidance on the construction of SuDS (C768) - Chapter 30

Advice Note 5 Road and Street Drainage using Nature-based Solutions - Design

#2: Swales

See Chapter 4 (p23-37) for case studies showing the NbS Toolbox used scross different typologies of development at a variety of scales




Figure 9: Typical Wet Swale Detail

4.1 Small Edge of Town Development

The development typology is a residential site of a traditional cul-de-sac style design.

The proposals comprise of 33 homes with front and rear gardens and a central green area for multi-amenity use.

The site is located just over 15minutes walk from the centre of town.

Proprietary Reinforced Grass Systems

Refer to Appendix D (p51) which explores the methodology behind this Case Study in detail.

Site area

Total site area: 1.63ha

Total permeable development area: 0.66ha Total impermeable development area: 0.97ha

Urban creep allowance: 10%

Total impermeable area modelled for storage: 1.07ha

m³/m² catchment storage coefficient: 0.05

Attenuation storage

Total required attenuation: 502m³ Total attenuation provided: 510m³

Water quality

Pollution hazard indices

- » Land use: individual property driveways, residential car parks, low traffic roads and non-residential car parking with infrequent change
- » Pollution hazard level: low
- Total suspended solids (TSS); metals; hydrocarbons: 0.5; 0.4; 0.4

NbS mitigation indices (TSS; metals;

hydrocarbons

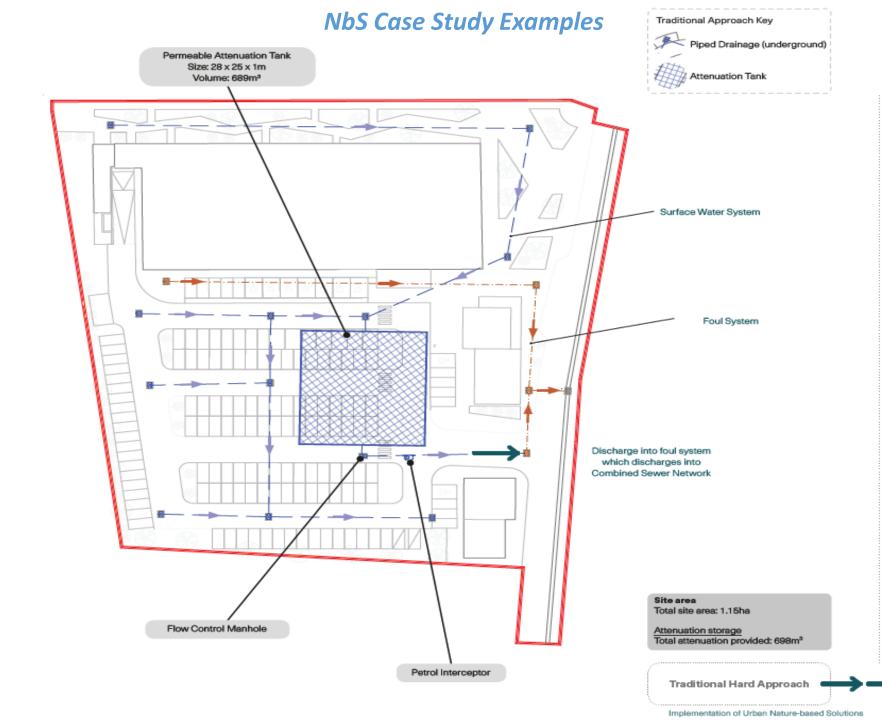
- » Bioretention underlain by a soil with good contaminant attenuation potential of at least 300mm in depth; 0.8; 0.8; 0.8
- » Total SuDs mitigation indicies ≥ pollution hazard index (taking into account NbS trains) Site is considered to adequately deal with pollution risk

Hierarchy of Discharge

» 1. Infiltration

Quaternary sediments - gravels derived from limestone -> infiltration is likely to be viable. Conservative infiltration rate assumed: 1.08m/hr

Guidance Document for Planners, Developers & Developer Agents


NbS Approach (Outline Design)

4.4 Urban Infill Commercial Development

The development typology is an infill commercial development.

The proposals comprise of two single storey commercial buildings with a larger retail unit identified for supermarket use.

The development includes a car park for retail use and is located within the extents of the town centre.

Site area

Total site area: 1.15ha

Total permeable development area: 0.13ha Total existing highway catchment area: 0.11ha Total impermeable development area: 0.92ha Urban creep allowance: 10%

Total impermeable area modelled for storage: 1.01ha

m³/m² catchment storage coefficient: 0.14

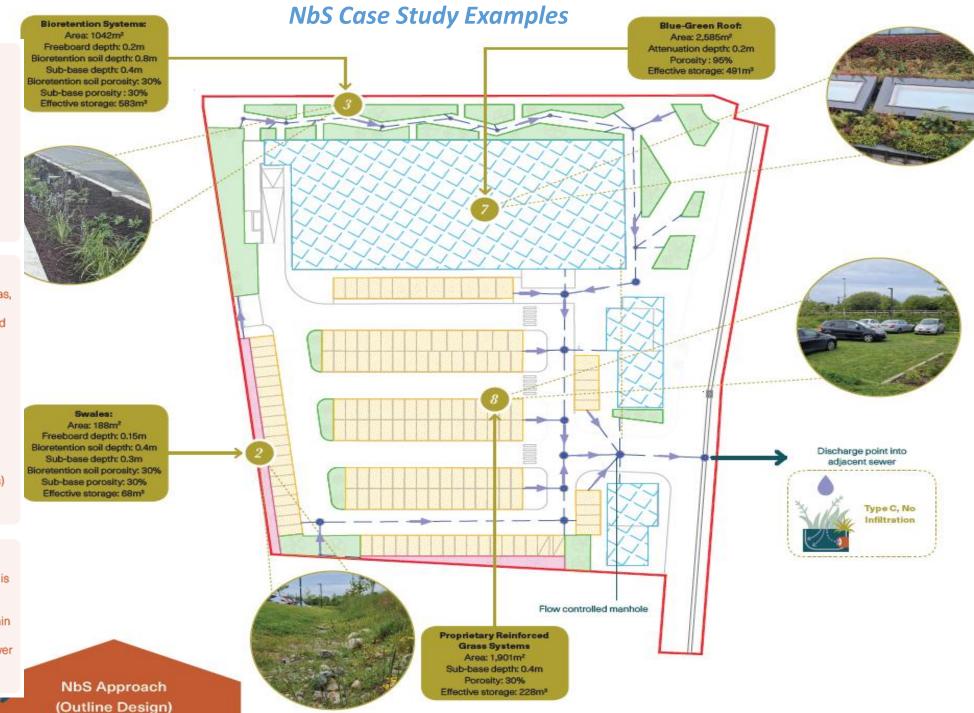
Attenuation storage

Total required attenuation: 1,369m³ Total attenuation provided: 1,370m³

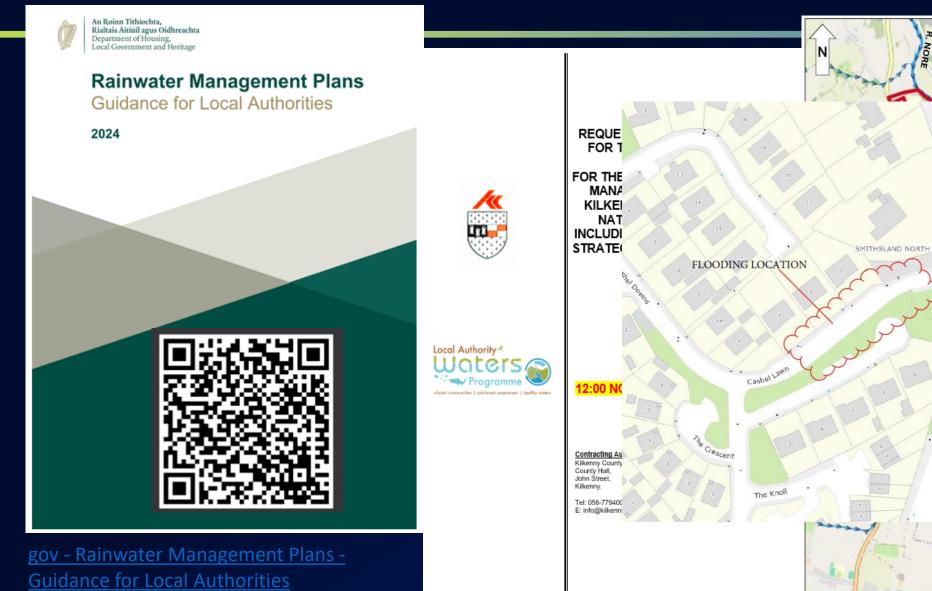
Water quality

Pollution hazard indices

- » Land use: commercial yard and delivery areas, non-residential car parking with frequent change, all roads except low traffic roads and trunk roads/motorways
- » Pollution hazard level: medium
- » Total suspended solids (TSS); metals; hydrocarbons: 0.7; 0.6; 0.7


NbS mitigation indices (TSS; metals; hydrocarbons)

- » Swale: 0.5, 0.6, 0.6
- » Bioretention system: 0.8; 0.8; 0.8
- » Permeable pavement: 0.7, 0.6, 0.7
- » Total SuDs mitigation indices ≥ pollution hazard index (taking into account NbS trains)

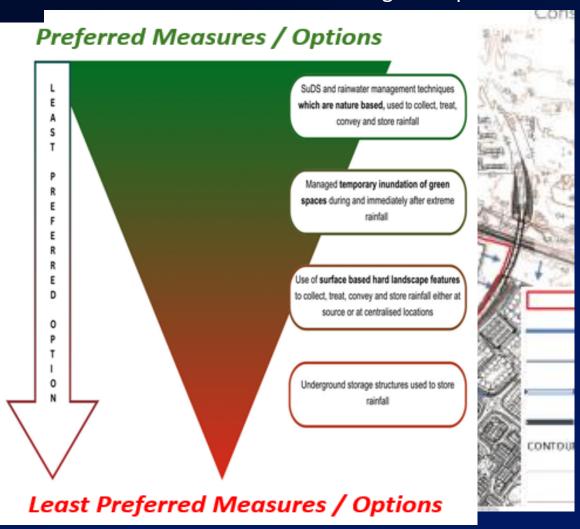

Site is considered to adequately deal with pollution risk

Hierarchy of Discharge

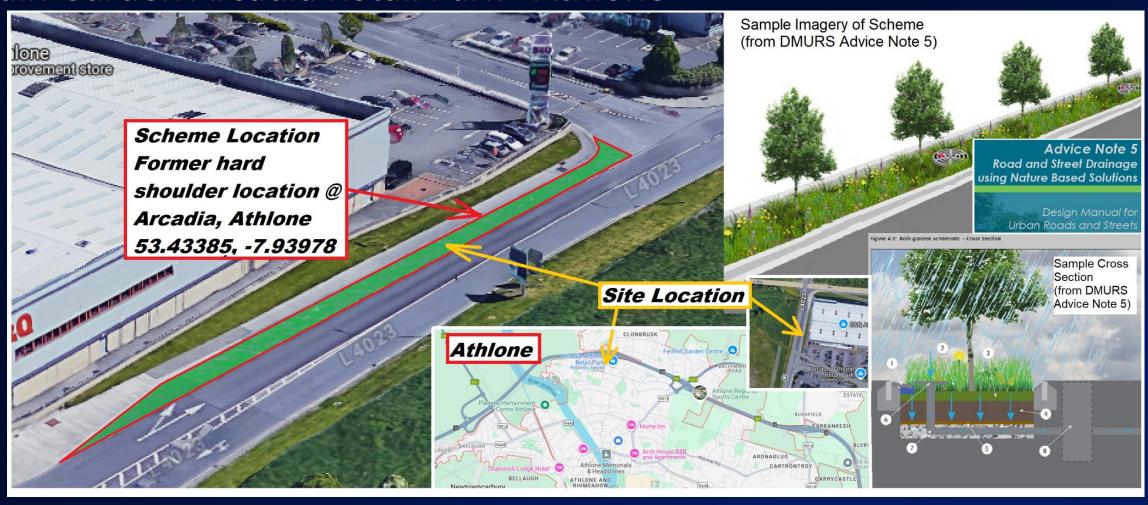
- » 1. Infiltration Quaternary sediments - urban => infiltration is unlikely to be viable.
- » 2. Discharge to surface water body No suitable surface water body present within the vicinity of the site
- » 3. Discharge to the public surface water sewer Discharge into existing sewer at greenfield runoff rate: 2.80I/s

Mainstreaming Nature-based Solutions (NbS) - Guidance Documents

(www.gov.ie)


SMITHSLAND y City Zoning River & Flow Direction Assumed Physical Boundary National Primary Roads National Secondary Roads Regional Roads Local Roads

Mainstreaming Nature-based Solutions (NbS) - Guidance Documents


Rainwater Management Plan Guidance

- Management of stormwater as it moves across urban areas
- Maps out the process and identifies data sources
- In support of settlement plans irrespective of scale
- Important in understanding of cloudburst scenarios
- Use existing maps and data
- Work off local knowledge
- Identify preferential flow routes based on topography and informed by the above
- Maps out the process and identifies data sources
- Should direct planning, brownfield site retrofits
- Key to protecting Combined Sewer networks and minimising overflows

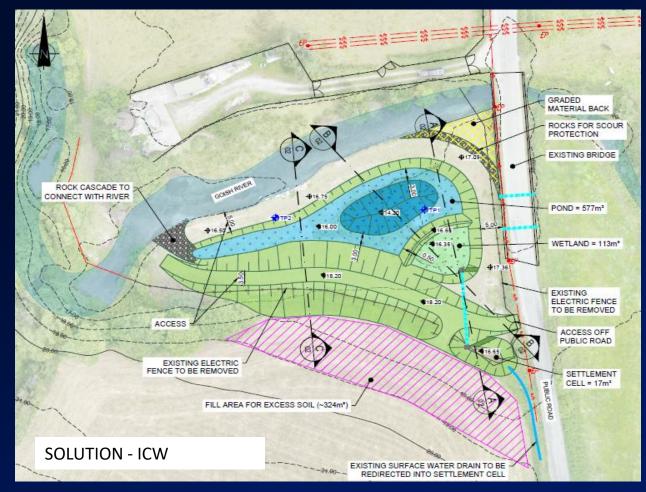
Follow the water Local Knowledge is important

Rain Garden Arcadia Retail Park - Athlone

Rain Garden Arcadia Retail Park – Athlone (2026)

Existing Turning Lane / Shoulder area

Excavation commenced Kerb Installed



Drainage Layer installed

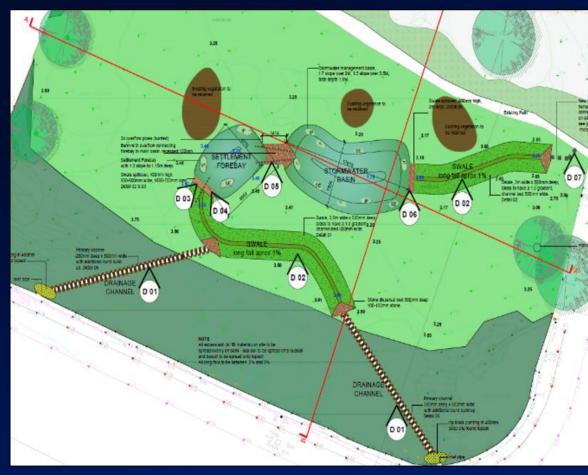
Integrated Constructed Wetland (ICW) – Coolroe, Aglish Village Waterford (2025)

- Flooding on Local Road affecting access to village and services including primary school.
- Integrated Constructed Wetland (ICW) for flood storage.

Drawing Courtesy of VESI Environmental Ltd & Waterford City & County Council

Integrated Constructed Wetland (ICW) – Coolroe, Aglish Village Waterford (2025)

Integrated Constructed Wetland (ICW) – Coolroe, Aglish Village Waterford (2025)



Picture Courtesy of Waterford City & County Council

- Educational aspect with local Villerstown National School
- 33 No. pupils visited the site on day 1 when ICW feature was being marked out
- Pupils were given a brief outline of the project
- Pupils were given acorns & horse Chesnuts to plant in pots
- Pupils will plant these on site next year
- Further talks with pupils will happen upon project completion to include LAWPRO & IFI

Swales Settlement Ponds Bog Field Carrick on Suir Co. Tipperary

Background & Context plus Design Plan View

Swales Settlement Ponds Bog Field Carrick on Suir Co. Tipperary


Rain Gardens Carlow Town

Pre-development

Photo: Ciaran Brennan, Carlow Co. Co.

Rain Gardens Carlow Town

Project Complete

Photo: Ciaran Brennan, Carlow Co. Co.

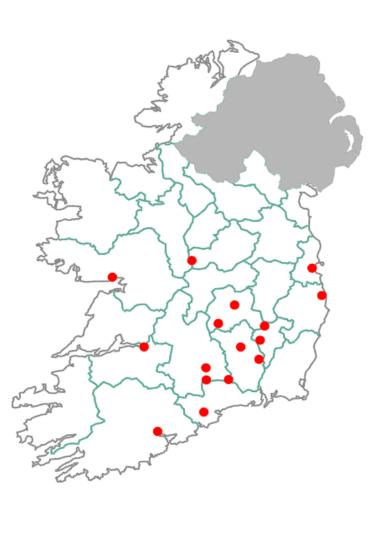


Figure 1: Locations of 2024 & 2025 LAWPRO NbS Demonstrator Projects

Local Authority	Location	NbS Feature	ITM Coordinates	
Carlow CoCo	Dublin Road, Carlow Town	Rain Gardens	X 672372 Y 677227	
Carlow CoCo	Bagenalstown	Rain Gardens	X 270552 Y 161547	
Cork City Co	Railway Park, Montenotte	Bioretention Areas, Swales & Tree Pits	X 568651 Y 572416	
Dublin City Co	OLM Secondary School, Drimnagh	Rain Gardens	X 711914 Y 732493	
Galway City Co	Woodquay Park	Rain Gardens	X 529735 Y 725676	
Laois CoCo	JFL Avenue, Portlaoise	Rain Gardens	X 647161 Y 698236	
Laois CoCo	Ballinakill	Rain Gardens		
Limerick C&CC	Island Road, Limerick City	Rain Gardens, Swales & Tree Pits	X 557934 Y 657786	
Tipperary CoCo	The Bog Field, Carrick-on-Suir	Swales & Detention Pond	X 640038 Y 621492	
Tipperary CoCo	Ormond Castle, Carrick-on-Suir	Rain Gardens	X 640359 Y 621708	
Tipperary CoCo	Cashel Road, Clonmel	Rain Garden	X 619142 Y 624672	
Tipperary CoCo	Suir Island Car Park, Clonmel	Rain Gardens	X 620305 Y 622211	
Tipperary CoCo	Fethard	Rain Gardens	X 620412 Y 634978	
Kilkenny CoCo	Crokers Hill, Kilkenny	Tree Pits, Swales, & Detention Ponds	X 649615 Y 656172	
Kilkenny CoCo	Graiguenamanagh	Rain Gardens	X 670782 Y644050	
Waterford C&CC	Coolroe Bridge, Aglish	Wetland Ponds	X 610786 Y 592159	
Westmeath CoCo	Arcadia Retail Park, Athlone	Rain Garden	X 604009 Y 742655	
Wicklow CoCo	Blacklion Manor Road, Greystones	Rain Gardens	X 728155 Y 712934	

LAWPRO NbS Demonstrator Programme

PRACTICAL IMPLEMENTATION OF NATURE-BASED SOLUTIONS

KEEP IT SIMPLE

Top Tips to achieve effective nature-based rainwater management

The Design Manual for Urban Roads and Streets (DMURS) Advice Note 5

- The design and construction criterion for any nature-based drainage feature must achieve the rapid and effective removal of rainwater from the pavement surface and the diversion of that flow into the nature-based feature.
- Designer and contractor must focus on the design and construction of the inlets from the pavement into the nature-based feature.
- The highest finished level within the nature-based feature must be a specified depth (freeboard) below the level of the paved area.
- The existing road gullies adjacent to nature-based features should be relocated so that they are within the nature-based feature. The top level of the gully grid should be designed to allow maximum water storage within the nature-based feature while preventing excess flows overflowing back onto the pavement surface.
- Only use trees where there is adequate soil volume available and where conflict with underground services can be avoided.
- Use appropriate soil mixtures (e.g., engineered soils for raingardens).
- Choose the **correct vegetation**. Look to use native plants as much as possible. Always aim for low maintenance with resilient plants that can withstand the urban environment, periods of waterlogging and drought.

Lessons learned along the journey

KEEP
IT
PRACTICA
L

Challenges and Barriers to Implementation of Nature-based Solutions

The Irish Green Building Council in partnership with Trinity College Dublin and funded by the Housing Agency, is investigating how nature-led residential development can become the norm rather than the exception in Ireland.

Their research highlights several barriers that must be addressed if nature-led development is to become the new norm:

- Policy and Regulation
- Knowledge and Skills
- Access to Expertise
- Long-Term Maintenance
- Financial Barriers

Initial Findings of the BIO-NEIGHBOUR project:

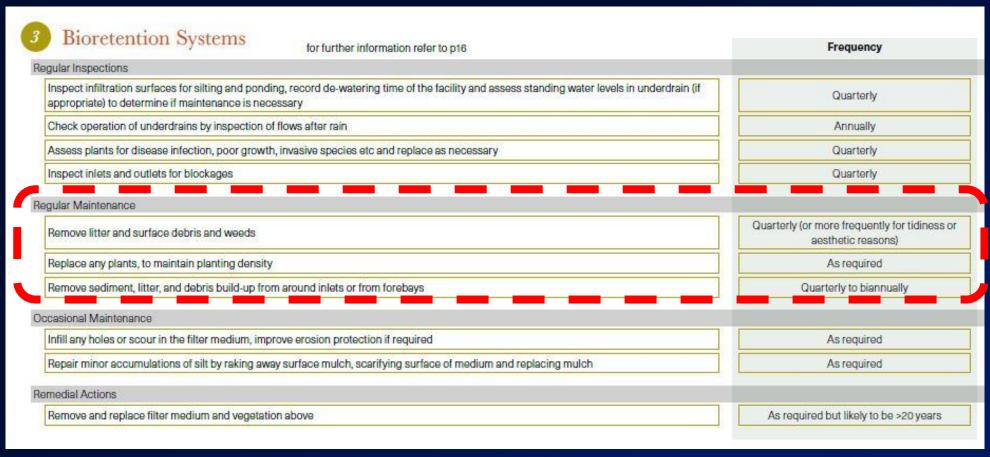
The aim is to move away from traditional grey solutions.....

Source: Roadstone Ltd.

..... and toward Nature-based Solutions for surface water management

Detention bas Seven Mills, Dublin 22

Maintenance Barriers



Source: Charlotte Glazier CMLI Linkedin.com/in/charl-g

Necessary maintenance of NbS Feature (Bioretention System)

Once developments are completed, there is often no clear responsibility or funding model for maintaining green infrastructure. This raises concerns about the long-term survival and effectiveness of nature-based features, especially in public or shared spaces.

Source: Implementation of Urban NbS – Guidance Document for Planners, Developers & Developer Agents

Necessary maintenance of Bypass Separators (Petrol Interceptors)

Separators are designed to capture oil and hazardous substances (such as hydrocarbons, metals and suspended solids) that would otherwise pollute the environment.

If your separator is not properly serviced and monitored, it can suffer blockages which can cause overflow or flooding, eventually polluting surrounding groundwater.

Separator Service & Maintenance Plan

- Complete an internal inspection of the structure for internal damage.
- Check closure device to ensure it is unrestricted by the new filter.
- Remove oil probe to be cleaned and tested to ensure it's operational.
- Fit all covers and check separator is fully operational.
- Complete logbook and sign off on-site.
- Routine empty/desludge*

*At 3, 6 or 12-month intervals - dependent on asset size and type.

LAWPRO guidance on the Taking in Charge processes & maintenance of urban NbS in the Local Authority Sector

- Engagement with all 31 Local Authorities on Taking in Charge and maintenance on urban NbS
- Focused discussions with LAs actively implementing, maintaining and taking in charge urban NbS, including associated costs of same
- Investigate experiences relevant for rural based LAs and urban LAs
- Analysis of results including;
 - Maintenance
 - Best practices, Management options, Community role, Costs of NbS maintenance vs conventional surface water management systems, Health & Safety considerations and insurance norms, Gap analysis of equipment required
 - Taking in Charge
 - Map out taking in charge options suitable for Local Authorities in Ireland
 - Cost considerations for NbS

Final scoping report with roadmap for Taking in Charge and practical recommendations for maintenance

Financial Barriers

Nature-based surface water management features often lack dedicated funding or incentives, particularly when it comes to public realm improvements.

Land Acquisition funding may be required for some Large Scale NbS Measures

Upscaling and mainstreaming Nature-based Solutions in the Urban Environment to deliver on Ireland's River Basin Management Plan: - through the Infrastructure, Climate and Nature Fund

In 2026, the NbS Demonstrator Programme will be retired and replaced by a dedicated Fund for NbS capital projects.

On behalf of the Department of Housing, Local Government and Heritage, LAWPRO's NbS Team will mange an NbS budget to support the upscaling and mainstreaming of NbS in the urban environment over the next 5 years.

The opportunity exists to harness the power of NbS and exploit the multiple benefits it can deliver in the areas of; climate adaptation, biodiversity, pluvial flooding, water quality and hydromorpholgy improvements, amenity, place making and healthy living spaces.

We have secured substantial funding for urban NBS which will be a multi-year programme from 2026 to 2030.

Project legacy:

This will build competency and capacity within the Local Authority sector and lead to the development of a multidisciplinary process to upscale and mainstream urban NbS in Ireland.

Call, Fund criteria etc to be confirmed - WATCH THIS SPACE

Session 2 - Nature-based Solutions (NbS) Practical Implementation

Tom Brennan & Eamonn O'Connell LAWPRO

THANK YOU

